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On Divisors of Odd Perfect Numbers 
By Joseph B. Muskat 

A perfect number is a positive integer the sum of whose divisors is equal to twice 
the number itself. Twenty-three even perfect numbers have been discovered to 
date [2]. No odd perfect number has yet been found, but various restrictions which 
an odd perfect number must satisfy have been established. For a summary, see [7]. 

For a perfect number n, a(n) = 2n, where a(n) denotes the sum of the divisors 
of n. Let 

n= fjei 

where the fj are distinct primes. Since a is a multiplicative function [8, p. 881, 

(1) 2n = 2]Ifjej = a(n) = II a(fjei) 

(2) Any divisor of the right side of (1) must divide 2n 

is an immediate consequence of (1). For example if 9, but not 27, divides n, then 
a(32) = 13 divides n. 

Euler deduced from (1) that n imust be of the form 

(3) n= parf q 2bi where p= a =1 (mod 4) 
i=1 

and p and the qj denote distinct primes [1, pp. 14-15]. Kfthnel [5] and others have 
proved that r > 5. 

Using these and other results, Kanold showed that there are no odd perfect 
numbers less than 1020 [3]. This superseded a bound of 1018, obtained by the author 
[8, p. 359b] with the help of the following: 

(4) Any odd perfect number must be divisible by a prime power greater than 108. 

Ore studied numbers whose harmonic means are integers, and showed that per- 
fect numbers have this property [9]. W. H. Mills demonstrated that any odd num- 
ber with an integral harmonic mean must have a prime power factor greater than 
107. This bound in Mills' (unpublished) calculation arose from the limited range of 
D. N. Lehmer's factor table [6] which Mills utilized. The author (as a part of his 
undergraduate thesis which was supervised by Professor Ore) extended Mills' result 
in the special case of odd perfect numbers with the aid of tables of Kraitchik [4, 
pp. 89, 91, 152-159] to obtain (4). 

More recently, the help of digital computers was enlisted to prove the following: 
THEOREM. Any odd perfect number must be divisible by a prime power greater 

than 1012. 

Outline of Proof. Assume that every prime power factor of n is less than 1012. 
Steuerwald showed that at least one of the bi in equation (3) must be greater than 
1 [10]. The corresponding qi, therefore, must be less than 1000. 

It was found that for each fe, where f is a prime < 1000 and fe < 1012 eventu- 
ally at least one of the following three contradictions develop by (repeated, if 
necessary) reference to (2): 
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(a) The integer n has a prime factor F 3 (mod 4), F > 106. F has an even 
exponent by (3). But then F2 > 1012. 

(b) A sequence of prime divisors develops that includes primes G, H _ 1 
(mod 4), where G is assigned an odd exponent and H > 106. By (3), H must have 
an even exponent, and H2 > 1012. 

*(c) A prime factor < 1000 (or 1093, which is specially included for convenience) 
that has been eliminated previously is encountered. 

The proof was divided into twenty-four phases. A prime factor f < 1000 (or 
1093) is eliminated during phase P + 1 if the previously eliminated primes upon 
which its exclusion depends include at least one prime in phase P. In order to 
shorten the proof, exclusions which depended upon previously eliminated primes 
were sought. 

The 168 possible primes are eliminated successively in the order indicated in 
Table 1. 

For reasons of space, only the first two phases of the proof are included here as 
Table 2. (The author will supply a copy of the complete proof upon request.) A 
copy has been placed in the UMT file of this journal. 

TABLE 1 

Phase Primes Eliminated 

1 127 271 
2 911 
3 19 
4 239 311 443 691 839 859 
5 179 919 
6 11 
7 163 467 619 857 883 971 
8 71 547 
9 587 593 709 1093 

10 151 227 
11 571 
12 109 461 
13 263 499 653 
14 7 359 
15 37 97 191 331 347 431 487 599 683 739 751 787 

823 863 907 977 
16 31 47 193 379 433 491 569 643 719 997 
17 61 281 293 349 557 631 
18 13 59 131 
19 23 113 167 233 337 353 367 389 419 503 523 607 

659 757 887 
20 3 137 229 283 373 677 733 
21 5 29 43 53 73 79 89 101 103 149 173 181 

199 223 241 257 269 307 317 383 401 439 449 457 
521 617 641 727 773 809 821 827 853 937 967 

22 17 41 83 157 211 251 397 409 479 509 541 601 
613 661 701 743 761 811 829 877 881 941 947 983 
991 

23 67 107 139 197 313 421 463 577 647 769 797 929 
953 

24 277 563 673 
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TABLE 2 

127 
127 (2) = 3 * 5419 

5419 (2) = 3 * 31 * 313 * 1009 
P 1009 = 2 * 5 * 101 

101 (2) = 10303 
10303 (2) = 3 * 5827 * 6073 

6073 (2) = 3 * 7 * 139 * 12637 
12637 (2) = 3 * 7 * 73 * 104179 

104179 (2) = 3 * 73 * 103 * 481153 
481153 (2) = 3 * 15199 * 5077279 /-/ 

101 (4) = 5 * 31 * 491 * 1381 
1381 (2) = 3 * 7 * 13 * 6991 

6991 (2) = 3 * 16293691 I-I 
1009 (2) = 3 * 37 * 9181 

P 9181 = 2 * 4591 
4591 (2) = 3 * 127 * 55333 

55333 (2) - 3 * 367 * 2780923 /-/ 
9181 (2) = 3 * 7 * 7 * 13 * 31 * 1423 

1423 (2) - 3 * 7 * 96493 
P 96493 2 * 48247 

48247 (2) = 3 * 775940419 /-/ 
96493 (2) = 3 * 19 * 163350799 /-/ 

127 (4) = 262209281 
P 262209281 = 2 * 3 * 3137 * 13931 

13931 (2) = 194086693 1+1 
271 

271 (2) = 3 * 24571 
24571 (2) = 3 * 201252871 /-I 

271 (4) = 5 * 251 * 4313591 /-I 
911 

911 (2) = 830833 
P 830833 = 2 * 127 // * 3271 

830833 (2) 3 * 13 * 61 * 337 * 861001 
P 861001 = 2 * 151 * 2851 

2851 (2) = 3 * 7 * 67 * 5779 
5779 (2) = 3 * 7 * 409 * 3889 

3889 (2) = 3 * 7 7-* 102913 
102913 (2) = 3 * 79 * 337 * 132607 

132607 (2) 3 * 103 * 109 * 127 1/ * 4111 
861001 (2) = 3 * 61 * 18661 * 217081 

P 217081 = 2 * 108541 
108541 (2) = 3 * 3927085741 1+1 

217081 (2) - 3 * 7 * 2083 * 1077301 
P 1077301 2 * 538651 

538651 (2) = 3 * 13 * 17509 * 424903 
424903 (2) = 3 * 60180994771 /-/ 

911 (4) = 5 * 11 * 701 * 17884211 /-/ 

The proof was recorded on punched cards, so only a restricted set of characters 
was available. The second and third lines of the proof would appear in conventional 
notation as follows: 

o(1272) = 3 5419, 

cr(54192) - 31P31341009. 
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The three criteria for exclusion, (a), (b), and (c), are marked by placing the sym- 
bols /-/, /+/, and / 7, respectively, after the prime. 

For primes 1 (mod 4), the only odd exponent which had to be considered 
was 1, as o-(p) divides (p2m+l). The prime with the odd exponent is preceded by 
the letter P. 

With this result, Kanold's lower bound of 1020 for an odd perfect number can 
be raised. To produce a specific number as a bound, however, it is necessary to as- 
semble various other restrictions upon odd perfect numbers. This is not being under- 
taken here, as M. Garcia has obtained (but not published) a yet higher bound. 

The University of Pittsburgh's IBM 7070 and IBM 7090 digital computers 
were used to obtain prime factorizations and to check the accuracy and complete- 
ness of the proof. The author wishes to express his appreciation to the University 
of Pittsburgh's Computation and Data Processing Center for granting access to 
these computers. This facility is supported in part under National Science Founda- 
tion Grants G11309 and GP2310. 

University of Pittsburgh 
Pittsburgh, Pennsylvania 
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Solutions of the Diophantine Equations 
x2 22 + Z2 - 2 z2 + 2 n2 

By M. Lal and W. J. Blundon 

Introduction. The solution of the system of three equations of the second degree 
in six unknowns i.e. x2 + y2 = 12 y2 + z2 = M 

2 and Z2 
+ x2 = W is a classical 

Diophantine problem [1, p. 112]. The geometrical significance of this problem is to 
find a rectangular parallelepiped whose edges and face diagonals are all rational 
integers. If x, y and z are relatively prime in pairs the above system has no solution; 
otherwise there are infinitely many solutions. 
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